Algoritma Machine Learning Dalam Ai Memungkinkan Komputer Untuk
Customer Service yang Lebih Cepat
Hasil penelitian mengatakan bahwa 79% pelanggan memilih live chat untuk komplain atau menanyakan suatu hal karena mendapatkan respon yang lebih cepat. Oleh karena itu, perusahaan dapat menggunakan chatbot untuk meningkatkan pelayanan terkait komplain atau pertanyaan dari pelanggan. Beberapa kelebihan dari chatbot adalah waktu tunggu respon tidak terlalu lama, tersedia setiap saat (tidak ada jam operasional), dan dapat mengarahkan query yang kompleks ke sumber daya manusia apabila pertanyaan atau keluhan tidak dapat ditangani oleh chatbot.
Logistic Regression
Logistic Regression atau Logit Regression adalah algoritma klasifikasi untuk mengklasifikasikan data ke dalam dua kategori. Istilah regresi sebaiknya tidak disalahartikan sebagai regresi dari supervised learning karena regresi dalam Logistic Regression mengacu pada Generalized Linear Model (GLM) dengan Fungsi Logit.
Model ini adalah salah satu model paling sederhana dalam algoritma klasifikasi dan digunakan dalam banyak contoh real-case seperti prediksi penyakit, prediksi churn, prediksi repeat-order, dan banyak kasus penggunaan klasifikasi lainnya.
Mengenai persamaannya, GLM adalah model kelas luas yang mencakup banyak model, misalnya: Linear Regression, ANOVA, dan Logistic Regression.
Logistic Regression mengikuti tiga komponen dasar GLM, yaitu:
Gambar 3. Struktur dasar GLM
Random Component (E(Y)): Ini adalah distribusi probabilitas model Logistic Regression (Variabel Respons), dalam hal ini, Binomial distribution atau lebih tepatnya, probabilitas keberhasilan suatu peristiwa (E(Y) = 1).
Systematic Component: Ini adalah variabel-variabel penjelas (x1, x2, …, xn) dalam prediktor linear (+1 X1 +2X2 + … + nXn).
Link Function (g()): Ini adalah fungsi yang menghubungkan nilai yang diharapkan (E(Y))) dari variabel terikat pada prediktor linier. Linear Regression menggunakan Fungsi Logit, yaitu log(P/1-P) di mana P adalah Probabilitas Keberhasilan (E(Y) = 1). Dengan Fungsi Logit, hasil diharapkan berada antara 0 hingga 1.
Semua struktur di atas akan membuat model yang disebut Logistic Regression.
Decision Tree adalah model klasifikasi di mana proses pembelajaran adalah metode untuk mendekati fungsi target diskrit yang direpresentasikan oleh decision tree. Kata tree merujuk pada mathematical graph theory, yang didefinisikan sebagai grafik tidak berarah di mana dua simpul (node) terhubung oleh satu jalur (path).
Sederhananya, decision tree adalah model klasifikasi untuk mengelompokkan data berdasarkan struktur pohon terbalik. Decision tree akan membuat simpul yang terus membagi berdasarkan pembelajaran data dan akan berhenti sampai parameter yang telah kita tentukan atau tidak ada lagi pembagian yang terjadi. Contoh decision tree ditunjukkan dalam gambar di bawah ini.
Gambar 4. Contoh Decision Tree
Bagaimana decision tree menentukan fitur dan nilai apa yang akan dibagi? Ada beberapa algoritma dalam pengambilan keputusan, tetapi yang umum adalah Gini Index, Entropy and Information Gain metrics. Ide dasar penggunaan kedua algoritma pembagian adalah untuk mengukur seberapa baik pembagiannya berdasarkan nilai yang kita bagi dan hasilnya. Perhatikan gambar di bawah ini untuk memahami bagaimana algoritma menentukan titik pembagian terbaik.
Gambar 5. Penentuan titik pembagian decision tree
Gambar di atas menunjukkan di mana X1 berada dalam dua nilai, dan nilai Information Gain (IG) berbeda. Pembagian terbaik adalah ketika IG lebih tinggi, sehingga X1 = 2 adalah titik pembagian terbaik. Pembagian terus berlanjut sampai simpul hanya memiliki satu kelas atau memenuhi hyperparameter yang telah kita atur.
Decision tree adalah salah satu model yang populer digunakan oleh banyak ahli data karena cepat dan mudah dijelaskan. Namun, model ini mengalami banyak masalah overfitting. Itulah mengapa banyak model dikembangkan dengan decision tree sebagai dasarnya — misalnya, Random Forest.
Random Forest adalah algoritma klasifikasi yang didasarkan pada decision tree. Nama random berasal dari randomisasi yang diperkenalkan dalam algoritma, dan nama forest berasal dari beberapa decision tree yang membangun model tersebut.
Sebelum kita membahas random forest , kita perlu memahami konsep ensemble learning karena model random forest diklasifikasikan sebagai salah satu dari mereka. Ensemble Learning adalah konsep dimana kita menggunakan beberapa algoritma untuk mencapai hasil prediksi dan kinerja yang lebih baik. Misalnya, kita menggunakan beberapa algoritma decision tree untuk membangun model random forest.
Tepatnya, random forest diklasifikasikan sebagai bootstrapping aggregating (bagging) ensemble. Apa itu bagging, dan bagaimana model bekerja? Pertama, kita perlu memahami konsep bootstrap dalam statistik. Bootstrap adalah metode untuk pengambilan sampel acak dengan penggantian; dengan kata lain, kita membuat dataset baru dari dataset yang sama dengan pengulangan. Perhatikan gambar di bawah ini untuk memahami bootstrap.
Gambar 6. Contoh Bootstraping
Gambar di atas menunjukkan bagaimana bootstrap bekerja. Kita memperlakukan data asli sebagai kolam, mengambil sampel ulang data dari sana, dan setiap dataset yang di-bootstrap bisa berisi nilai yang sama. Contoh di atas menunjukkan dua data yang di-bootstrap dengan tiga sampel untuk setiap dataset.
Kita akan menggunakan beberapa decision tree yang secara eksplisit dilatih dengan data yang di-bootstrapped dalam model random forest. Untuk setiap decision tree yang kita gunakan, kita melatih pada data bootstrap yang berbeda. Jadi, jika kita memiliki 100 decision tree dalam random forest, kita akan melatih 100 decision tree dalam 100 data bootstrap yang berbeda.
Kita menggunakan metode bootstrap untuk memperkenalkan ke-random-an ke dalam model dan menghindari overfitting karena data bootstrap akan memiliki estimasi distribusi yang serupa dengan data asli tetapi berbeda. Proses ini akan memastikan terjadinya generalisasi.
Selain itu, untuk menghindari overfitting lebih lanjut, algoritma random forest dapat mengurangi jumlah fitur yang akan dipertimbangkan saat membuat data bootstrap.
Seringkali, ini adalah akar kuadrat total fitur dari data asli; jadi jika data asli kita memiliki empat fitur, kita akan menggunakan dua fitur dalam data bootstrap kita. Pemilihan fitur juga dilakukan secara acak untuk menghindari overfitting lebih lanjut.
Pada akhirnya, setiap decision tree akan memiliki output probabilitas. Output dari random forest akan menjadi rata-rata dari setiap decision tree. Gambar di bawah ini merangkum algoritma random forest.
Gambar 6. Algoritma Random Forest secara umum
Naive Bayes adalah algoritma klasifikasi berdasarkan Teorema Bayes ( Bayes Theorem). Berbeda dengan frequentist theorem, di mana probabilitas suatu peristiwa didasarkan pada data saat ini, Teorema Bayes akan memperbarui probabilitas berdasarkan probabilitas sebelumnya (prior probability).
Sebagai contoh, kita mengasumsikan bahwa probabilitas hujan adalah 50% ketika cuaca cerah, tetapi setiap hari kita memperbarui probabilitas dengan setiap informasi yang tersedia. Probabilitas Teorema Bayes dapat dijelaskan dalam gambar berikut.
Gambar 7. Persamaan Theorema Bayes
Gambar di atas menunjukkan Teorema Bayes di mana:
P(A|B) adalah probabilitas posterior (Probabilitas peristiwa A terjadi jika B benar)
P(B|A) adalah probabilitas peristiwa B terjadi jika A benar. Kita juga bisa mengatakan ini adalah peluang (likelihood) A akan terjadi jika B tetap.
P(A) dan P(B) adalah prior probabilities; tanpa syarat apapun atau bila tidak ada bukti, seberapa besar kemungkinan terjadinya peristiwa A atau B.
Sehubungan dengan dataset, kita dapat menyatakan persamaan awal Naive Bayes seperti gambar di bawah.
Gambar 8. persamaan awal Naive Bayes
Mari kita ambil contoh dari dataset sebelumnya dan katakanlah X = (Width = 15, Weight = 100, Color = Red) dan y = Apple. Jadi kita bisa menyatakan bahwa pengklasifikasi Naive Bayes P(y|X) adalah probabilitas Apple diberikan Width = 15, Weight = 100, dan Color = Red. Untuk menghitung probabilitas, biasanya algoritma Naive Bayes memerlukan data kontinu untuk diskritisasi atau menggunakan estimasi densitas probabilitas. Tetapi untuk contoh kali ini, mari kita anggap mereka adalah kategorikal.
Jika kita masukkan semua informasi dari data kita ke dalam algoritma Naive Bayes, maka akan seperti gambar di bawah ini.
Gambar 9. Perhitungan Apel dengan Naive Bayes
Kita memasukkan informasi pada data yang kita miliki. Untuk P(Apple) atau prior adalah kemunculan label Apple dibandingkan dengan semua data yang ada, yaitu 3/5. Sebagai contoh, likelihood dari P(Width = 15 | Apple) hanya muncul dalam 1 data dari semua 3 data dengan label Apple.
Kita juga dapat menghitung probabilitas invers (Not Apple, diberikan data) dengan persamaan dan hasil berikut.
Gambar 10. Perhitungan Bukan Apel dengan Naive Bayes
Jika kita menggunakan hasil di atas, probabilitas Apple lebih tinggi daripada Not Apple, artinya data akan menghasilkan Apple. Biasanya, probabilitas akan dinormalisasi untuk kedua kasus, sehingga kita selalu memiliki total probabilitas sebesar 1 dengan persamaan berikut.
Gambar 11. Perhitungan Naive Bayes yang sudah dinormalisasi
Naive Bayes sering digunakan karena kemudahan dan kesederhanaan algoritmanya. Waktu pelatihan juga cukup cepat dibandingkan dengan algoritma yang lain. Model ini populer pada use-case NLP karena berfungsi baik dalam banyak kasus NLP, seperti analisis sentimen, sentiment analysis, spam filtering, dan lain sebagainya.
Cara Kerja Machine Learning
Pada beberapa bagian sebelumnya kita telah mengenali beberapa algoritma machine learning. Agar lebih memahaminya sebaiknya kita mengetahui bagaimana cara kerja machine learning itu. Machine learning pada awalnya bekerja dengan cara belajar yang bertujuan untuk menghasilkan model tertentu. Model yang telah dibentuk itu nantinya akan menjadi informasi untuk pemecahan masalah baik dalam proses input maupun output. Kemudian model tersebut dapat memprediksi atau mengelompokkan data pada kedepannya.
Baca juga : Belajar Data Science: Pahami Penggunaan Machine Learning pada Python
Random Forest Classifier
Algoritma Random Forest Classifier merupakan salah satu algoritma klasifikasi machine learning yang paling populer. Seperti namanya, algoritma ini bekerja dengan cara membuat hutan pohon secara acak. Semakin banyak pohon yang dibuat, maka hasilnya akan semakin akurat.
Dasar dari algoritma random forest adalah algoritma decision tree. Keuntungan dari algoritma ini adalah dapat digunakan u8ntuk rekayasa fitur seperti mengidentifikasi fitur yang paling penting diantara semua fitur yang tersedia dalam dataset training, bekerja sangat baik pada database berukuran besar, sangat fleksibel, dan memiliki akurasi yang tinggi.
4. Support Vector Machine
Support Vector Machine atau biasa dikenal dengan algoritma SVM adalah algoritma machine learning yang digunakan untuk masalah klasifikasi atau regresi. Namun, aplikasi yang paling sering digunakan adalah masalah klasifikasi.
Algoritma SVM banyak digunakan untuk mengklasifikasikan dokumen teknis misalnya spam filtering, mengkategorikan artikel berita berdasarkan topik, dan lain sebagainya. Keuntungan algoritma ini adalah cepat, efektif untuk ruang dimensi tinggi, akurasi yang bagus, powerful dan fleksibel, dan dapat digunakan di banyak aplikasi.
Bcaa juga : Bootcamp Machine Learning and AI for Beginner
Di era big data, machine learning merupakan salah satu teknologi yang banyak dicari. Hal ini menyebabkan meningkatnya minat belajar algoritma machine learning. Karena sebagian besar menggunakan data berukuran besar, maka tools yang digunakan pun tidak sembarangan dan perlu keahlian untuk mengaplikasikan tools tersebut. Ingin belajar machine learning beserta tools-nya? Yuk bergabung bersama DQLab!
DQLab adalah platform edukasi pertama yang mengintegrasi fitur ChatGPT yang memudahkan beginner untuk mengakses informasi mengenai data science secara lebih mendalam.
DQLab juga menggunakan metode HERO yaitu Hands-On, Experiential Learning & Outcome-based, yang dirancang ramah untuk pemula. Jadi sangat cocok untuk kamu yang belum mengenal data science sama sekali. Untuk bisa merasakan pengalaman belajar yang praktis dan aplikatif, yuk sign up sekarang di DQLab.id atau ikuti Bootcamp Machine Learning and AI for Beginner berikut untuk informasi lebih lengkapnya!
Penulis: Galuh Nurvinda K
Ket. foto: Ilustrasi - Machine learning. Shutterstock.
Algoritma dalam machine learning adalah sekumpulan aturan yang digunakan oleh sistem machine learning untuk mengambil keputusan atau membuat prediksi. Algoritma dalam machine learning dapat dibagi menjadi dua kategori yaitu supervised learning dan unsupervised learning. Supervised learning adalah algoritma yang digunakan untuk membuat prediksi berdasarkan data latihan yang sudah ditandai dengan label atau target yang diinginkan. Sedangkan unsupervised learning adalah algoritma yang digunakan untuk menemukan struktur atau pola dalam data yang tidak dikenal sebelumnya. Ada berbagai jenis algoritma machine learning yang digunakan dalam berbagai aplikasi, seperti algoritma regresi, klasifikasi, clustering, dan deep learning.
Algoritma adalah sekumpulan aturan yang digunakan untuk menyelesaikan suatu masalah atau untuk mencapai tujuan tertentu. Algoritma dapat didefinisikan sebagai serangkaian langkah-langkah yang harus diikuti secara sistematis dan logis untuk menyelesaikan masalah atau mencapai tujuan tertentu. Algoritma dapat digambarkan dalam bentuk flowchart, pseudocode, atau bahasa pemrograman. Algoritma dapat digunakan dalam berbagai bidang, seperti matematika, komputer, pengambilan keputusan, dan lainnya. Dalam bidang komputer, algoritma digunakan dalam pemrograman untuk menyelesaikan masalah-masalah yang kompleks.
Baca Juga: Pentingnya Sentiment Analysis dalam Annual Report
Machine learning dalam digital marketing saat ini menjadi topik yang sedang banyak dibicarakan. Dalam digital marketing, machine learning membantu stakeholder untuk menganalisis iklan pemasaran, menilai efisiensi pekerjaan, dan melihat adanya peluang pasar. Salah satu tools yang menggunakan algoritma machine learning adalah analytics intelligence. Menurut Google, analytics intelligence adalah serangkaian fitur yang menggunakan machine learning untuk memahami pola dalam data dan hasilnya dapat digunakan untuk dasar pengambilan keputusan.
Semakin banyak data yang digunakan oleh analytics intelligence untuk membuat model, maka hasilnya pun akan semakin akurat. Salah satu program yang dimiliki oleh google dalam pemanfaatan algoritma machine learning adalah pemanfaatan kumpulan data terkait aktivitas pelanggan di website untuk menganalisis apakah kampanye iklan sudah efektif dan akurat atau belum. Algoritma machine learning dapat digunakan untuk berbagai hal di bidang marketing. Mau tahu apa saja yang bisa dilakukan oleh algoritma machine learning dalam digital marketing? Yuk simak artikel ini sampai akhir!
Regresi Ridge dan Lasso
Regresi Ridge dan Lasso adalah varian dari regresi linear yang menggunakan regularisasi untuk mengurangi overfitting. Regularisasi menambahkan penalti pada kompleksitas model, membuatnya lebih tahan terhadap outlier dan mengurangi ketergantungan pada variabel yang kurang penting.
Regresi Ridge menambahkan penalti kuadrat pada koefisien regresi, membuat semua koefisien mendekati nol tetapi tidak pernah benar-benar nol.
Regresi Lasso memberikan penalti yang dapat membuat beberapa koefisien regresi menjadi nol, yang berarti Lasso juga berfungsi sebagai metode seleksi fitur.
Baca juga : Yuk Kenali Macam-Macam Algoritma Machine Learning!
Python Libraries untuk Machine Learning
Python dengan libraries, modul, dan kerangkanya bisa digunakan untuk membantu kebutuhan machine learning. Hanya saja, Anda perlu menguasai pengaplikasian Python guna mendapatkan manfaatnya dalam machine learning dan data science. Berikut adalah sepuluh rekomendasi Python libraries yang bisa Anda gunakan.
Pandas adalah library Python yang paling dikenal dan banyak digunakan. Paket ini bisa digunakan untuk menganalisis data dengan cepat, realistis, dan serbaguna. Anda dapat memakainya untuk mengombinasikan, mengelompokkan, dan mengklasifikasikan data yang berasal dari berbagai sumber, seperti Excel, SQL databases, CSV, dan sebagainya. Oleh karena itu, Pandas menjadi salah satu paket Python yang wajib dimiliki lantaran performanya yang stabil dan bersifat open source.
Selanjutnya, ada NumPy atau Numerical Python. NumPy adalah aljabar linear yang dikembangkan dalam Python guna memecahkan berbagai permasalahan terkait numerik. Banyak ahli dan pengguna yang memilih paket ini karena NumPy memiliki kemampuan untuk memecahkan permasalahan-permasalahan rumit menyangkut operasional matematika. Selain itu, NumPy juga banyak digunakan untuk menangani berbagai permasalahan lain, seperti gambar, suara, dan operasional biner lainnya.
Matplotlib adalah salah satu Python libraries yang juga sering digunakan. Paket ini dipakai untuk kepentingan visualisasi data yang melibatkan grafik, plot, histogram, dan lain-lain. Visualisasi data diperlukan untuk memahami data secara lebih mendalam sebelum melakukan data-processing dan melatihnya dalam program machine learning. Matplotlib banyak digemari karena memiliki sifat yang open source dan gratis untuk diakses.
Seaborn adalah salah satu paket yang kerap digunakan dalam Python libraries. Paket ini dirancang di atas Matplotlib dan terintegrasi dengan struktur data dari Pandas. Sama halnya dengan Matplotlib, Seaborn digunakan untuk kepentingan visualisasi data agar data mudah dipahami. Dalam machine learning, Seaborn berfungsi membaca dan memahami data-data untuk kemudian dipetakan dalam bentuk grafis statistik, sehingga dapat menghasilkan plot yang informatif.
Berikutnya adalah SciPy sebagai Python libraries yang cukup dikenal. Paket ini terdiri dari beberapa modul untuk memperoleh hasil terbaik, meliputi statistik, integrasi, hingga aljabar linear. Kelebihan dari SciPy adalah operasionalnya yang mudah untuk mengatasi persoalan matematika. Selain itu, paket ini juga berguna untuk digunakan dalam image manipulation.
Python libraries berikutnya yang tidak kalah populer adalah Scikit-learn. Paket ini menjadi salah satu yang legendaris dalam dunia machine learning. Scikit-learn dibuat atas dua Python libraries, yakni NumPy dan SciPy. Dengan demikian, fungsinya tak jauh berbeda dengan kedua libraries pokoknya, yaitu untuk memecahkan berbagai permasalahan numerik. Namun, paket ini juga bisa digunakan untuk keperluan data mining dan analisis data.
Selanjutnya ada Python libraries yang dikembangkan oleh tim Google Brain dari Google, TensorFlow. Paket ini biasa digunakan untuk memecahkan permasalahan matematika dalam berbagai aplikasi artificial intelligence atau AI. Paket ini banyak digunakan oleh berbagai pengembang lantaran mampu menjalankan komputasi dengan melibatkan tensors. Selain itu, perangkat ini juga memungkinkan penerapan komputasi di berbagai perangkat, mulai dari komputer hingga smartphone.
Keras adalah salah satu Python libraries yang cukup populer. Sebab, paket ini memudahkan para pemula untuk pembuatan prototipe. Selain itu, proses prototyping juga bisa dikatakan jadi lebih cepat. Keras dibuat atas dasar TensorFlow, CNTK, dan Theano. Kelebihan lain dari paket ini adalah mampu digunakan untuk visualisasi data selain menyusun model, mengolah dataset, dan mengevaluasi hasil akhir.
Machine learning pada dasarnya berkutat pada persoalan matematika dan statistik. Begitu juga dengan Theano yang berfungsi untuk mendefinisikan, mengevaluasi, dan mengoptimalkan berbagai himpunan multidimensi dalam matematika. Paket ini biasanya digunakan untuk program komputasi berskala besar. Namun, tidak sedikit juga yang menggunakannya untuk proyek individu.
Terakhir ada PyTorch yang menjadi produk machine learning library dari tim Facebook. Paket ini dibuat untuk menyaingi keberadaan TensorFlow karena keduanya sama-sama menggunakan tensors. Akan tetapi, PyTorch didesain untuk lebih mudah dipahami dan dioperasikan. Meski demikian, paket ini hanya dapat digunakan untuk pengembangan dan pelatihan program deep learning.
Machine learning merupakan pembelajaran mesin yang mempelajari beberapa hal di dalamnya seperti algoritma, ilmu statistik, dan lainnya. Machine learning merupakan teknologi bagian dari Artificial Intelligence. Ketika seseorang melakukan proses pengolahan data, sebagian besar orang membutuhkan algoritma machine learning untuk menyelesaikan atau mencari solusi dari permasalahan data yang ada. Algoritma machine learning pun sangat beragam dan digunakan sesuai dengan masalah data yang sesuai.
Algoritma sendiri merupakan suatu proses langkah demi langkah yang tersusun untuk menyelesaikan permasalahan. Algoritma machine learning sendiri sangat beragam dan sudah sering digunakan untuk menyelesaikan permasalahan data dalam berbagai bidang seperti kesehatan, pendidikan, bisnis, keuangan, dan masih banyak lainnya. Kira-kira apa saja ya algoritma machine learning yang cukup sering digunakan dan bagaimana cara kerja machine learning? Yuk, simak artikel berikut ini!
Naive Bayes merupakan salah satu algoritma supervised learning yang sederhana dan cukup sering digunakan. Algoritma ini menggunakan dasar Teori Bayes di dalamnya. Algoritma ini memiliki data training (data yang sudah terdapat label kelas) dan data testing (data yang belum memiliki label kelas). Algoritma Naive Bayes bekerja dengan cara memaksimalkan nilai suatu kelas. Kelas yang memiliki probabilitas tertinggi akan masuk ke dalam salah satu dari label-label yang tersedia.
Baca juga : 3 Jenis Algoritma Machine Learning yang Dapat Digunakan di Dunia Perbankan
Jika pada algoritma supervised learning salah satu tujuan kita adalah untuk mengetahui label kelas pada data, maka pada unsupervised learning tidak berlaku demikian. K-Means merupakan salah satu algoritma supervised learning yang mana cara kerjanya adalah mengklaster atau mengelompokkan data sesuai dengan karakteristik atau kemiripan data menjadi beberapa klaster sesuai dengan nilai k yang telah ditentukan. Pada algoritma ini dibutuhkan centroid atau nilai pusat serta menghitung jarak kedekatan data dengan centroid. Algoritma ini dilakukan secara berulang sampai tidak ada perubahan anggota dalam masing-masing kelompok.
KNN atau K-Nearest Neighbour merupakan salah satu algoritma supervised learning yang mengklasifikasikan atau mengelompokkan data ke dalam beberapa kelompok berdasarkan kemiripan sifat dari data. Algoritma ini hampir mirip dengan algoritma K-Means, yang membedakan adalah pada K-Means melakukan proses clustering sedangkan pada KNN melakukan proses klasifikasi. Terkadang orang menyebut algoritma ini dengan sebutan algoritma malas dikarenakan pada algoritma ini tidak mempelajari cara mengkategorikan data akan tetapi hanya mengingat data yang sudah ada.
Reinforcement Learning
Reinforcement learning adalah sistem machine learning yang melakukan tugas dengan memaksimalkan reward melalui tindakan tertentu. Reinforcement learning menggunakan agen untuk mengamati keadaan lingkungan tertentu dan memilih suatu keadaan untuk bertindak. Tindakan akan menghasilkan reward atau penalty tergantung pada pilihan tersebut. Reinforcement learning akan mendorong algoritma untuk menemukan strategi terbaik dalam memaksimalkan reward. Keputusan tersebut kemudian akan menjadi agen dalam suatu lingkungan tertentu.
Kita sering menggunakan reinforcement learning ketika kita tidak memiliki banyak data atau mendapatkan data dengan berinteraksi dengan lingkungan. Contoh reinforcement learning adalah self-driving car dan AI Chess.
Intip Modul DQLab Tentang Algoritma Machine Learning Disini, Yuk!
Dengan modul dan materi yang update, belajar python menggunakan bahasa menjadi lebih mudah dan terstruktur bersama DQLab. Karena terdiri dari modul-modul up-to-date dan sesuai dengan penerapan industri yang disusun oleh mentor-mentor berpengalaman dibidangnya dari berbagai unicorn, dan perusahaan besar seperti Tokopedia, DANA, Jabar Digital dan masih banyak lagi. Yuk, belajar terstruktur dan lebih interaktif cukup dengan Sign up sekarang di DQLab.id atau klik button dibawah ini untuk nikmati pengalaman belajar yang seru dan menyenangkan!
Penulis: Rian Tineges
Editor: Annissa Widya Davita
Machine learning membawa peran penting dalam sekelumit kehidupan manusia. Bukan tidak mungkin, bila machine learning tentu dibutuhkan dalam berbagai hal. Salah satunya yaitu prediksi harga rumah. Dengan memanfaatkan berbagai macam algoritma, model machine learning dapat memproses berbagai variabel seperti lokasi, ukuran, kondisi bangunan, dan tren pasar untuk menghasilkan estimasi harga yang lebih akurat dan cepat.
Hal ini tidak hanya membantu para pembeli dan penjual, tetapi juga perusahaan real estate dalam menganalisis dan membuat keputusan bisnis yang lebih tepat. Seiring berkembangnya teknologi, penerapan machine learning dalam industri properti akan semakin luas, mulai dari perencanaan kota hingga pengelolaan properti secara otomatis. Berikut adalah contoh algoritma machine learning yang dipakai untuk prediksi harga rumah
Algoritma regresi linear merupakan salah satu teknik paling dasar dalam machine learning yang sering digunakan untuk memprediksi harga rumah. Regresi linear sederhana bekerja dengan membuat hubungan antara variabel independen (faktor-faktor yang mempengaruhi harga, seperti luas bangunan atau jumlah kamar) dan variabel dependen (harga rumah). Algoritma ini berasumsi bahwa ada hubungan linier antara variabel-variabel tersebut.
Baca juga : Bootcamp Machine Learning and AI for Beginner
Random Forest adalah algoritma ensemble yang menggabungkan beberapa pohon keputusan (decision trees) untuk membuat prediksi. Setiap pohon keputusan dilatih menggunakan subset acak dari data, dan hasil akhirnya merupakan rata-rata dari semua prediksi pohon.
Mengatasi masalah overfitting lebih baik daripada satu pohon keputusan.
Mampu menangani dataset yang kompleks dan non-linier.
Fleksibel terhadap berbagai jenis data, seperti data kategorikal dan kontinu.
Apa Perbedaan Antara Supervised, Unsupervised, dan Reinforcement Learning?
Machine learning adalah bidang studi dimana manusia mencoba memberikan kemampuan kepada mesin untuk belajar dari data secara eksplisit. Mesin inilah yang kita sebut model machine learning dan yang kita gunakan untuk menyelesaikan masalah kita. Ada berbagai bentuk aplikasi machine learning di industri, misalnya: face recognition machine dan email spam detection adalah aplikasi model machine learning.
Mengetahui model machine learning mana yang harus diterapkan dalam setiap use case sangat penting karena tidak semua model dapat diaplikasikan untuk setiap use case. Model yang sesuai akan meningkatkan metrik model kita.
Machine learning adalah bidang yang luas dengan banyak istilah yang digunakan di dalamnya. Untuk memberikan pemahaman yang jelas tentang apa itu algoritma klasifikasi, pertama-tama kita perlu membahas tentang tiga sistem machine learning yang berbeda berdasarkan pengawasan manusia; Supervised, Unsupervised, dan Reinforcement Learning?
Supervised Learning adalah model machine learning yang menggunakan data training dari manusia yang mencakup solusi yang diinginkan. Data training sudah berisi jawaban untuk masalah yang ingin kita selesaikan, dan mesin diharapkan meniru pola pada input data (prediktor) untuk menghasilkan output yang serupa.
Contoh data training untuk Supervised Learning adalah sebagai berikut:
Gambar 1. Data training untuk Supervised Learning
Ada dua typical tasks dari supervised learning; Klasifikasi dan Regresi. Apa perbedaan di antara keduanya? Pada dasarnya, perbedaannya berasal dari hasil prediksi.
Algoritma klasifikasi berfokus pada hasil prediksi diskrit, misalnya, prediksi Churn (keluar atau tidak), Heart Disease (terpengaruh oleh penyakit jantung atau tidak), dll.
Sebaliknya, algoritma regresi berfokus pada hasil prediksi numerik di mana hasilnya tidak terbatas pada kelas tertentu, misalnya: harga rumah, jarak mobil, penggunaan energi, dll.